À¦°óSMÉçÇø

Minor Biomedical Engineering (21 credits)

Offered by: Biomedical Engineering     Degree: Bachelor of Engineering

Program Requirements

Minor Advisers: Prof. R. Leask (Wong Building, Room 4120) or Prof. R. Mongrain (Macdonald Engineering Building, Room 369)

Note: Open to all students in the Faculty of Engineering (including B.S.E. students).

Minor program credit weight: 21-25 credits

The Biomedical Engineering Minor allows access to courses in basic life sciences and is intended to expose students to the interdisciplinary tools used in biomedicine.

To complete this Minor, students must obtain a grade of C or better in all approved courses and satisfy the requirements of both the Major program and the Minor.

Students considering this Minor should contact the Minor Advisers listed above.

Complementary Introductory Courses in Life Sciences

3-7 credits

One or two courses from the following list (equivalents can be approved):

  • ANAT 212 Molecular Mechanisms of Cell Function (3 credits)

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : An introductory course describing the biochemistry and molecular biology of selected key functions of animal cells, including: gene expression; mitochondrial production of metabolic energy; cellular communication with the extra-cellular environment; and regulation of cell division.

    Terms: Winter 2016

    Instructors: Duchaine, Thomas; Branton, Philip E; Bouchard, Maxime (Winter)

  • BIOC 212 Molecular Mechanisms of Cell Function (3 credits)

    Offered by: Biochemistry (Faculty of Science)

    Overview

    Biochemistry : An introductory course describing the biochemistry and molecular biology of selected key functions of animal cells, including: gene expression; mitochondrial production of metabolic energy; cellular communication with the extra-cellular environment; and regulation of cell division.

    Terms: Winter 2016

    Instructors: Duchaine, Thomas; Branton, Philip E; Bouchard, Maxime (Winter)

    • Winter

    • Prerequisite: BIOL 200

    • Restrictions: A non-terminal course intended to be followed by BIOC 311; BIOC 312 in the U2 year. Not open to students who have taken or are taking BIOL 201 or ANAT 212.

  • BIOL 200 Molecular Biology (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.

    Terms: Fall 2015

    Instructors: Bureau, Thomas E; Roy, Richard D W; Zetka, Monique; Hastings, Kenneth E M (Fall)

    • Fall

    • 3 hours lecture, 1 hour optional tutorial

    • Prerequisite: BIOL 112 or equivalent

    • Corequisite: CHEM 212 or equivalent

  • BIOL 201 Cell Biology and Metabolism (3 credits)

    Offered by: Biology (Faculty of Science)

    Overview

    Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.

    Terms: Winter 2016

    Instructors: Brown, Gregory G; Roy, Richard D W; Dent, Joseph Alan (Winter)

    • Winter

    • 3 hours lecture, 1 hour optional tutorial

    • Prerequisite: BIOL 200.

    • Restriction: Not open to students who have taken or are taking ANAT 212 or BIOC 212

  • CHEM 212 Introductory Organic Chemistry 1 (4 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.

    Terms: Fall 2015, Winter 2016, Summer 2016

    Instructors: Daoust, Michel; Sewall, Samuel Lewis; Gauthier, Jean-Marc; Sleiman, Hanadi; Pavelka, Laura (Fall) Daoust, Michel; Gauthier, Jean-Marc; Huot, Mitchell; Lumb, Jean-Philip (Winter) Pavelka, Laura; Gauthier, Jean-Marc; Daoust, Michel (Summer)

    • Fall, Winter, Summer

    • Prerequisite: CHEM 110 or equivalent.

    • Corequisite: CHEM 120 or equivalent.

    • Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent

    • Each lab section is limited enrolment

    • Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry's Web page ().

  • PHGY 209 Mammalian Physiology 1 (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : Physiology of body fluids, blood, body defense mechanisms, muscle, peripheral, central, and autonomic nervous systems.

    Terms: Fall 2015

    Instructors: Vollrath, Melissa; Gold, Phil; Wechsler, Ann (Fall)

  • PHGY 210 Mammalian Physiology 2 (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : Physiology of cardiovascular, respiratory, digestive, endocrine and renal systems.

    Terms: Winter 2016

    Instructors: White, John H; Takano, Tomoko; Guevara, Michael R (Winter)

Specialization Courses

12-18 credits from the following:

Students must select 6 credits from courses outside their department and at least one BMDE course. These BMDE courses are best taken near the end of the program, when prerequisites have been satisfied.

Physiological Systems, Artificial Cells and Organs

  • BMDE 505 Cell and Tissue Engineering (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : Application of the principles of engineering, physical, and biological sciences to modify and create cells and tissues for therapeutic applications will be discussed, as well as the industrial perspective and related ethical issues.

    Terms: Winter 2016

    Instructors: Prakash, Satya (Winter)

    • (3-0-6)

    • 1.5 hours lecture/1.5 hours seminar per week

    • Restriction: graduate and final year undergraduate students from physical, biological, and medical science, and engineering.

  • PHGY 311 Channels, Synapses & Hormones (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : In-depth presentation of experimental results and hypotheses on cellular communication in the nervous system and the endocrine system.

    Terms: Fall 2015

    Instructors: Cooper, Ellis; Sjostrom, Per Jesper; Sharif Naeini, Reza (Fall)

    • Fall

    • 3 hours of lectures per week; 1-3 hours optional lab/demonstration/tutorial arranged for a maximum of 3 afternoons per term

    • Prerequisite: PHGY 209 or permission of the instructor.

  • PHGY 312 Respiratory, Renal, & Cardiovascular Physiology (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : In-depth presentation of experimental results and hypotheses underlying our current understanding of topics in renal, respiratory and cardiovascular functions explored beyond the introductory level.

    Terms: Winter 2016

    Instructors: Hanrahan, John W; Mortola, Jacopo; Shrier, Alvin (Winter)

    • Winter

    • 3 hours of lectures per week; 1-3 hours optional lab/demonstration/tutorial arranged for a maximum of 3 Wednesday afternoons per term

    • Prerequisites: PHGY 209 and PHGY 210 or equivalent, PHGY 311 or permission of the instructor

  • PHGY 313 Blood, Gastrointestinal, & Immune Systems Physiology (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : In-depth presentation of experimental results and hypotheses underlying our current understanding of topics in immunology, blood and fluids, and gastrointestinal physiology.

    Terms: Winter 2016

    Instructors: Jones, Russell; Blank, Volker Manfred; Kokoeva, Maia (Winter)

    • Winter

    • 3 hours of lectures per week; 1-3 hours optional lab/demonstration/tutorial arranged for a maximum of 3 Wednesday afternoons per term

    • Prerequisites: PHGY 209 and PHGY 210 or equivalent, PHGY 311 or permission of the instructor

  • PHGY 517 Artificial Internal Organs (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : Physiological, bioengineering, chemical and clinical aspects of artificial organs including basic principles and physiopathology of organ failure. Examples: oxygenator, cardiac support, vascular substitutes, cardiac pacemaker, biomaterials and tissue engineering, biocompatibility.

    Terms: This course is not scheduled for the 2015-2016 academic year.

    Instructors: There are no professors associated with this course for the 2015-2016 academic year.

    • Winter

    • Prerequisite (Undergraduate): permission of instructors.

  • PHGY 518 Artificial Cells (3 credits)

    Offered by: Physiology (Faculty of Science)

    Overview

    Physiology : Physiology, biotechnology, chemistry and biomedical application of artificial cells, blood substitutes, immobilized enzymes, microorganisms and cells, hemoperfusion, artificial kidneys, and drug delivery systems. PHGY 517 and PHGY 518 when taken together, will give a complete picture of this field. However, the student can select one of these.

    Terms: Fall 2015

    Instructors: Chang, Thomas Ming Swi; Barre, Paul E; Shum-Tim, Dominique (Fall)

    • Fall

    • Prerequisite (Undergraduate): permission of instructors.

Bioinformatics, Genomics and Proteomics

  • ANAT 365 Cellular Trafficking (3 credits) *

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : An intensive study of the processes of protein secretion and cell membrane biogenesis. Emphasis on morphological aspects of the above processes, and on the major techniques which have provided experimental evidence, namely, subcellular fractionation, cytochemistry and quantitative electron microscope radioautography.

    Terms: Fall 2015

    Instructors: McBride, Heidi; McPherson, Peter Scott; Kennedy, Timothy E (Fall)

  • ANAT 458 Membranes and Cellular Signaling (3 credits)

    Offered by: Anatomy and Cell Biology (Faculty of Science)

    Overview

    Anatomy & Cell Biology : An integrated treatment of the properties of biological membranes and of intracellular signaling, including the major role that membranes play in transducing and integrating cellular regulatory signals. Biological membrane organization and dynamics; membrane transport; membrane receptors and their associated effectors; mechanisms of regulation of cell growth, morphology, differentiation and death.

    Terms: Winter 2016

    Instructors: Silvius, John R; Autexier, Chantal; Sossin, Wayne Steven (Winter)

  • BIOC 311 Metabolic Biochemistry (3 credits)

    Offered by: Biochemistry (Faculty of Science)

    Overview

    Biochemistry : The generation of metabolic energy in higher organisms with an emphasis on its regulation at the molecular, cellular and organ level. Chemical concepts and mechanisms of enzymatic catalysis are also emphasized. Included: selected topics in carbohydrate, lipid and nitrogen metabolism; complex lipids and biological membranes; hormonal signal transduction.

    Terms: Fall 2015

    Instructors: St-Pierre, Julie; Schmeing, Thomas Martin; Tremblay, Michel (Fall)

  • BIOC 312 Biochemistry of Macromolecules (3 credits)

    Offered by: Biochemistry (Faculty of Science)

    Overview

    Biochemistry : Gene expression from the start of transcription to the synthesis of proteins, their modifications and degradation. Topics covered: purine and pyrimidine metabolism; transcription and its regulation; mRNA processing; translation; targeting of proteins to specific cellular sites; protein glycosylation; protein phosphorylation; protein turn-over; programmed cell death (apoptosis).

    Terms: Winter 2016

    Instructors: Nepveu, Alain; Richard, Stephane; Pelletier, Gerard (Winter)

  • BIOC 458 Membranes and Cellular Signaling (3 credits) *

    Offered by: Biochemistry (Faculty of Science)

    Overview

    Biochemistry : An integrated treatment of the properties of biological membranes and of intracellular signaling, including the major role that membranes play in transducing and integrating cellular regulatory signals. Biological membrane organization and dynamics: membrane transport; membrane receptors and their associated effectors; mechanisms of regulation of cell growth, morphology, differentiation and death.

    Terms: Winter 2016

    Instructors: Silvius, John R; Autexier, Chantal; Sossin, Wayne Steven (Winter)

  • BMDE 506 Molecular Biology Techniques (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : Introduction to major techniques of molecular biology for physical scientists.

    Terms: This course is not scheduled for the 2015-2016 academic year.

    Instructors: There are no professors associated with this course for the 2015-2016 academic year.

    • (1-5-3)

    • Prerequisites: MATH 222, BIOL 200 or BIOL 201, CHEM 212 or CHEM 213 or PHYS 253

    • Restrictions: Limited to 18 students. Calculus required, physics or physical chemistry (thermodynamics, statistical mechanics) preferred. Primarily for graduate students or advanced undergraduate students in the physical sciences who are interested in learning molecular biology techniques. Preference given to graduate students in Biomedical Engineering and Physics. Students who have completed BIOC 300 or MIMM 366 are not eligible.

  • BMDE 509 Quantitative Analysis and Modelling of Cellular Processes (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : Quantitative models for key intra- and inter-cellular processes. Key mathematical concepts: stochastic differential equations, Markov models, Gibbs free energy, and Fick's Law. Biological systems: neurons, networks of bacteria, and genetic regulatory systems. Emphasis on the design of quantitative experiments and data analysis.

    Terms: This course is not scheduled for the 2015-2016 academic year.

    Instructors: There are no professors associated with this course for the 2015-2016 academic year.

  • COMP 302 Programming Languages and Paradigms (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Programming language design issues and programming paradigms. Binding and scoping, parameter passing, lambda abstraction, data abstraction, type checking. Functional and logic programming.

    Terms: Fall 2015, Winter 2016

    Instructors: Pientka, Brigitte (Fall) Panangaden, Prakash (Winter)

  • COMP 360 Algorithm Design (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Advanced algorithm design and analysis. Linear programming, complexity and NP-completeness, advanced algorithmic techniques.

    Terms: Fall 2015, Winter 2016

    Instructors: Hatami, Hamed (Fall) Hatami, Hamed (Winter)

  • COMP 421 Database Systems (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Database Design: conceptual design of databases (e.g., entity-relationship model), relational data model, functional dependencies. Database Manipulation: relational algebra, SQL, database application programming, triggers, access control. Database Implementation: transactions, concurrency control, recovery, query execution and query optimization.

    Terms: Winter 2016

    Instructors: Kemme, Bettina (Winter)

  • COMP 424 Artificial Intelligence (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Introduction to search methods. Knowledge representation using logic and probability. Planning and decision making under uncertainty. Introduction to machine learning.

    Terms: Winter 2016

    Instructors: Pineau, Joelle (Winter)

  • COMP 462 Computational Biology Methods (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Application of computer science techniques to problems arising in biology and medicine, techniques for modeling evolution, aligning molecular sequences, predicting structure of a molecule and other problems from computational biology.

    Terms: Fall 2015

    Instructors: Blanchette, Mathieu (Fall)

  • COMP 526 Probabilistic Reasoning and AI (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Belief networks, Utility theory, Markov Decision Processes and Learning Algorithms.

    Terms: This course is not scheduled for the 2015-2016 academic year.

    Instructors: There are no professors associated with this course for the 2015-2016 academic year.

* Students choose either ANAT 365 or BIOC 458

Biomaterials, Biosensors, and Nanotechnology

  • BMDE 504 Biomaterials and Bioperformance (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : Biological and synthetic biomaterials, medical devices, and the issues related to their bioperformance. The physicochemical characteristics of biomaterials in relation to their biocompatibility and sterilization.

    Terms: Winter 2016

    Instructors: Tabrizian, Maryam (Winter)

    • (3-0-6)

    • Restriction: Graduate and final-year undergraduate students from physical, biological and medical science, and engineering

  • BMDE 505 Cell and Tissue Engineering (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : Application of the principles of engineering, physical, and biological sciences to modify and create cells and tissues for therapeutic applications will be discussed, as well as the industrial perspective and related ethical issues.

    Terms: Winter 2016

    Instructors: Prakash, Satya (Winter)

    • (3-0-6)

    • 1.5 hours lecture/1.5 hours seminar per week

    • Restriction: graduate and final year undergraduate students from physical, biological, and medical science, and engineering.

  • BMDE 508 Introduction to Micro and Nano-Bioengineering (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : The micro and nanotechnologies that drive and support the miniaturization and parallelization of techniques for life sciences research, including different inventions, designs and engineering approaches that lead to new tools and methods for the life sciences - while transforming them - and help advance our knowledge of life.

    Terms: Fall 2015

    Instructors: Juncker, David (Fall)

    • (3-0-6)

    • Prerequisite: Permission of instructor

    • This course is intended for graduate and advanced undergraduate students having a biological/medical background or an engineering, physical sciences background. Engineering students enrolled in the Minor in Biomedical Engineering, or Honours in Electrical Engineering and Honours in Mechanical Engineering, should be particularly interested.

  • CHEE 380 Materials Science (3 credits)

    Offered by: Chemical Engineering (Faculty of Engineering)

    Overview

    Chemical Engineering : Structure/property relationship for metals, ceramics, polymers and composite materials. Atomic and molecular structure, bonds, electronic band structure and semi-conductors. Order in solids: crystal structure, disorders, solid phases. Mechanical properties and fracture, physico-chemical properties, design. Laboratory exercises.

    Terms: Fall 2015

    Instructors: Meunier, Jean-Luc (Fall)

    • (3-1-5)

  • ECSE 424 Human-Computer Interaction (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : The course highlights human-computer interaction strategies from an engineering perspective. Topics include user interfaces, novel paradigms in human-computer interaction, affordances, ecological interface design, ubiquitous computing and computer-supported cooperative work. Attention will be paid to issues of safety, usability, and performance.

    Terms: Fall 2015

    Instructors: Cooperstock, Jeremy (Fall)

  • MECH 553 Design and Manufacture of Microdevices (3 credits)

    Offered by: Mechanical Engineering (Faculty of Engineering)

    Overview

    Mechanical Engineering : Introduction to microelectromechanical systems (MEMS). Micromachining techniques (thin-film deposition; lithography; etching; bonding). Microscale mechanical behaviour (deformation and fracture; residual stresses; adhesion; experimental techniques). Materials- and process-selection. Process integration. Design of microdevice components to meet specified performance and reliability targets using realistic manufacturing processes.

    Terms: Winter 2016

    Instructors: Vengallatore, Srikar (Winter)

    • (3-0-6)

    • Prerequisite: Instructor's permission.

  • MIME 360 Phase Transformations: Solids (3 credits)

    Offered by: Mining & Materials Engineering (Faculty of Engineering)

    Overview

    Mining & Materials Engineering : Free energy (equilibrium) and kinetic (non-equilibrium) considerations, phase diagrams and TTT diagrams, solid state diffusion, diffusional (nucleation and growth) and shear (martensitic) transformations.

    Terms: Fall 2015

    Instructors: Chromik, Richard (Fall)

  • MIME 362 Mechanical Properties (3 credits)

    Offered by: Mining & Materials Engineering (Faculty of Engineering)

    Overview

    Mining & Materials Engineering : Stress-strain behaviour. Elasticity and plasticity of metals, ceramics and polymers. Dislocations theory. Single crystal and polycrystalline slip. Mechanical twinning. Strengthening mechanisms. Process-property and microstructure-property relationships. Notch toughness and fracture mechanics. Failure, fracture and damage accumulation. Fatigue. Creep and creep rupture. Fractography. Design considerations in materials selection.

    Terms: Fall 2015

    Instructors: Pekguleryuz, Mihriban Ozden (Fall)

  • MIME 470 Engineering Biomaterials (3 credits)

    Offered by: Mining & Materials Engineering (Faculty of Engineering)

    Overview

    Mining & Materials Engineering : Key definitions, clinical need, desired materials properties, current and future materials, materials assessments and performance. Materials of the body. Characterisation techniques for bulk and mechanical properties of biomaterials. Engineering processing and design of biomaterials.

    Terms: Fall 2015

    Instructors: Nazhat, Showan (Fall)

    • 3-0-6

    • Prerequisite: MIME 261 or equivalent. Permission of instructor.

  • PHYS 534 Nanoscience and Nanotechnology (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : Topics include scanning probe microscopy, chemical self-assembly, computer modelling, and microfabrication/micromachining.

    Terms: Fall 2015

    Instructors: Grutter, Peter H (Fall)

    • Fall

    • Restriction: U3 or graduate students in Physics, Chemistry, or Engineering, or permission of the instructor.

Biomechanics and Prosthetics

  • BMDE 503 Biomedical Instrumentation (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : The principles and practice of making biological measurements in the laboratory, including theory of linear systems, data sampling, computer interfaces and electronic circuit design.

    Terms: Fall 2015

    Instructors: Wagner, Ross (Fall)

    • (3-0-6)

    • Prerequisite: Experience with differential equations, in particular Laplace Transforms and complex numbers (e.g. MATH 263 or MATH 381 or equivalent) or permission of instructor.

  • CHEE 561 Introduction to Soft Tissue Biophysics (3 credits)

    Offered by: Chemical Engineering (Faculty of Engineering)

    Overview

    Chemical Engineering : Soft tissue structure and function: tissue, cell, and molecular scales. Interstitial solute transport, modeling effective transport properties (diffusivity, partitioning). Poroelastic mechanics, modeling of mechanical properties (modulus, permeability). The electrical double layer, electrostatic component of modulus, modeling electrokinetic phenomena (streaming potential, electroosmosis). Applications: biomechanics, mechanobiology, tissue engineering, functional assessment, biomedical entrepreneurship.

    Terms: This course is not scheduled for the 2015-2016 academic year.

    Instructors: There are no professors associated with this course for the 2015-2016 academic year.

    • (3-1-5)

    • Prerequisite: CHEE 315 or permission of the instructor

  • CHEE 563 Biofluids and Cardiovascular Mechanics (3 credits) *

    Offered by: Chemical Engineering (Faculty of Engineering)

    Overview

    Chemical Engineering : Basic principles of circulation including vascular fluid and solid mechanics, modelling techniques, clinical and experimental methods and the design of cardiovascular devices.

    Terms: This course is not scheduled for the 2015-2016 academic year.

    Instructors: There are no professors associated with this course for the 2015-2016 academic year.

    • (3-0-6)

    • Prerequisites: CHEE 314 or MECH 331 or permission of instructor.

    • Restriction: Not open to students who have taken MECH 563.

  • MECH 315 Mechanics 3 (4 credits)

    Offered by: Mechanical Engineering (Faculty of Engineering)

    Overview

    Mechanical Engineering : Single-degree-of-freedom systems; free vibrations; effect of damping; response to harmonic, periodic and arbitrary excitation. Lagrange's equations of motion. Vibrations of multi-degree-of-freedom systems. Continuous systems.

    Terms: Fall 2015, Winter 2016

    Instructors: Vengallatore, Srikar (Fall) Mongeau, Luc (Winter)

  • MECH 321 Mechanics of Deformable Solids (3 credits)

    Offered by: Mechanical Engineering (Faculty of Engineering)

    Overview

    Mechanical Engineering : Modern phenomenological theories of the behaviour of engineering materials. Stress and strain concepts and introduction to constitutive theory. Applications of theory of elasticity and thermoelasticity. Introduction to finite element stress analysis methods.

    Terms: Fall 2015, Winter 2016

    Instructors: Legrand, Mathias (Fall) Mongrain, Rosaire (Winter)

  • MECH 530 Mechanics of Composite Materials (3 credits)

    Offered by: Mechanical Engineering (Faculty of Engineering)

    Overview

    Mechanical Engineering : Fiber-reinforced composites. Stress, strain, and strength of composite laminates and honeycomb structures. Failure modes and failure criteria. Environmental effects. Manufacturing processes. Design of composite structures. Computer modelling of composites. Computer techniques are utilized throughout the course.

    Terms: Fall 2015

    Instructors: Lessard, Larry (Fall)

    • (3-0-6)

    • Corequisite: MECH 321 or equivalent/instructor's permission.

  • MECH 561 Biomechanics of Musculoskeletal Systems (3 credits)

    Offered by: Mechanical Engineering (Faculty of Engineering)

    Overview

    Mechanical Engineering : The musculoskeletal system; general characteristics and classification of tissues and joints. Biomechanics and clinical problems in orthopaedics. Modelling and force analysis of musculoskeletal systems. Passive and active kinematics. Load-deformation properties of passive connective tissue, passive and stimulated muscle response. Experimental approaches, case studies.

    Terms: This course is not scheduled for the 2015-2016 academic year.

    Instructors: There are no professors associated with this course for the 2015-2016 academic year.

  • MECH 563 Biofluids and Cardiovascular Mechanics (3 credits) *

    Offered by: Mechanical Engineering (Faculty of Engineering)

    Overview

    Mechanical Engineering : Basic principles of circulation including vascular fluid and solid mechanics, modelling techniques, clinical and experimental methods and the design of cardiovascular devices.

    Terms: Winter 2016

    Instructors: Mongrain, Rosaire; Leask, Richard L (Winter)

    • (3-0-6)

    • Prerequisites: CHEE 314 or MECH 331 or permission of instructor

    • Restriction: Not open to students who have taken CHEE 563

  • MIME 360 Phase Transformations: Solids (3 credits)

    Offered by: Mining & Materials Engineering (Faculty of Engineering)

    Overview

    Mining & Materials Engineering : Free energy (equilibrium) and kinetic (non-equilibrium) considerations, phase diagrams and TTT diagrams, solid state diffusion, diffusional (nucleation and growth) and shear (martensitic) transformations.

    Terms: Fall 2015

    Instructors: Chromik, Richard (Fall)

  • MIME 362 Mechanical Properties (3 credits)

    Offered by: Mining & Materials Engineering (Faculty of Engineering)

    Overview

    Mining & Materials Engineering : Stress-strain behaviour. Elasticity and plasticity of metals, ceramics and polymers. Dislocations theory. Single crystal and polycrystalline slip. Mechanical twinning. Strengthening mechanisms. Process-property and microstructure-property relationships. Notch toughness and fracture mechanics. Failure, fracture and damage accumulation. Fatigue. Creep and creep rupture. Fractography. Design considerations in materials selection.

    Terms: Fall 2015

    Instructors: Pekguleryuz, Mihriban Ozden (Fall)

* Students choose either CHEE 563 or MECH 563.

Medical Physics and Imaging

  • BMDE 519 Biomedical Signals and Systems (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : An introduction to the theoretical framework, experimental techniques and analysis procedures available for the quantitative analysis of physiological systems and signals. Lectures plus laboratory work using the Biomedical Engineering computer system. Topics include: amplitude and frequency structure of signals, filtering, sampling, correlation functions, time and frequency-domain descriptions of systems.

    Terms: Fall 2015

    Instructors: Kearney, Robert E (Fall)

    • (3-0-6)

    • Prerequisites: Satisfactory standing in U3 Honours Physiology; or U3 Major in Physics-Physiology; or U3 Major Physiology-Mathematics; or permission of instructor

  • COMP 302 Programming Languages and Paradigms (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Programming language design issues and programming paradigms. Binding and scoping, parameter passing, lambda abstraction, data abstraction, type checking. Functional and logic programming.

    Terms: Fall 2015, Winter 2016

    Instructors: Pientka, Brigitte (Fall) Panangaden, Prakash (Winter)

  • COMP 360 Algorithm Design (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Advanced algorithm design and analysis. Linear programming, complexity and NP-completeness, advanced algorithmic techniques.

    Terms: Fall 2015, Winter 2016

    Instructors: Hatami, Hamed (Fall) Hatami, Hamed (Winter)

  • COMP 424 Artificial Intelligence (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Introduction to search methods. Knowledge representation using logic and probability. Planning and decision making under uncertainty. Introduction to machine learning.

    Terms: Winter 2016

    Instructors: Pineau, Joelle (Winter)

  • COMP 558 Fundamentals of Computer Vision (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Biological vision, edge detection, projective geometry and camera modelling, shape from shading and texture, stereo vision, optical flow, motion analysis, object representation, object recognition, graph theoretic methods, high level vision, applications.

    Terms: This course is not scheduled for the 2015-2016 academic year.

    Instructors: There are no professors associated with this course for the 2015-2016 academic year.

  • ECSE 303 Signals and Systems 1 (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Elementary continuous and discrete-time signals, impulse functions, basic properties of discrete and continuous linear time-invariant (LTI) systems, Fourier representation of continuous-time periodic and aperiodic signals, the Laplace transform, time and frequency analysis of continuous-time LTI systems, application of transform techniques to electric circuit analysis.

    Terms: Fall 2015, Winter 2016

    Instructors: Mahajan, Aditya (Fall) Mahajan, Aditya (Winter)

  • ECSE 304 Signals and Systems 2 (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Application of transforms to the analysis of LTI single-loop feedback systems, the discrete-time Fourier series, the discrete-time Fourier transform, the Z transform, time and frequency analysis of discrete-time LTI systems, sampling systems, application of continuous and discrete-time signal theory to communications LTI systems.

    Terms: Fall 2015, Winter 2016

    Instructors: Psaromiligkos, Ioannis (Fall) Psaromiligkos, Ioannis (Winter)

    • (3-2-4)

    • Prerequisite: ECSE 303

    • Tutorials assigned by instructor.

  • ECSE 412 Discrete Time Signal Processing (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Discrete-time signals and systems; Fourier and Z-transform analysis techniques, the discrete Fourier transform; elements of FIR and IIR filter design, filter structures; FFT techniques for high speed convolution; quantization effects.

    Terms: Fall 2015

    Instructors: Champagne, Benoit (Fall)

  • PHYS 557 Nuclear Physics (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : General nuclear properties, nucleon-nucleon interaction and scattering theory, radioactivity, nuclear models, nuclear reactions.

    Terms: Fall 2015

    Instructors: Gale, Charles (Fall)

    • Fall

    • 3 hours lectures

    • Restriction: U3 Honours students, graduate students, or permission of the instructor

Neural Systems and Biosignal Processing

  • BMDE 501 Selected Topics in Biomedical Engineering (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : An overview of how techniques from engineering and the physical sciences are applied to the study of selected physiological systems and biological signals. Using specific biological examples, systems will be studied using: signal or finite-element analysis, system and identification, modelling and simulation, computer control of experiments and data acquisition.

    Terms: Fall 2015

    Instructors: Funnell, W Robert J (Fall)

    • (3-0-6)

  • BMDE 502 BME Modelling and Identification (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : Methodologies in systems or distributed multidimensional processes. System themes include parametric vs. non-parametric system representations; linear/non-linear; noise, transients and time variation; mapping from continuous to discrete models; and relevant identification approaches in continuous and discrete time formulations.

    Terms: Winter 2016

    Instructors: Galiana, Henrietta L; Mitsis, Georgios (Winter)

    • (3-0-6)

    • Prerequisites: Undergraduate basic statistics and: either BMDE 519, or Signals and Systems (e.g., ECSE 303 & ECSE 304) or equivalent

  • BMDE 503 Biomedical Instrumentation (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : The principles and practice of making biological measurements in the laboratory, including theory of linear systems, data sampling, computer interfaces and electronic circuit design.

    Terms: Fall 2015

    Instructors: Wagner, Ross (Fall)

    • (3-0-6)

    • Prerequisite: Experience with differential equations, in particular Laplace Transforms and complex numbers (e.g. MATH 263 or MATH 381 or equivalent) or permission of instructor.

  • BMDE 519 Biomedical Signals and Systems (3 credits)

    Offered by: Biomedical Engineering (Faculty of Engineering)

    Overview

    Biomedical Engineering : An introduction to the theoretical framework, experimental techniques and analysis procedures available for the quantitative analysis of physiological systems and signals. Lectures plus laboratory work using the Biomedical Engineering computer system. Topics include: amplitude and frequency structure of signals, filtering, sampling, correlation functions, time and frequency-domain descriptions of systems.

    Terms: Fall 2015

    Instructors: Kearney, Robert E (Fall)

    • (3-0-6)

    • Prerequisites: Satisfactory standing in U3 Honours Physiology; or U3 Major in Physics-Physiology; or U3 Major Physiology-Mathematics; or permission of instructor

  • ECSE 517 Neural Prosthetic Systems (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Selected topics in bioengineering focusing on the principles of neural prosthetics systems (brain machine interfaces). Paralysis as a communication problem. Motor control theory receptive fields. Electrical properties of the central nervous system, modern measurement technologies, encoding and mutual information, statistical data analysis, decoding and thought prediction.

    Terms: This course is not scheduled for the 2015-2016 academic year.

    Instructors: There are no professors associated with this course for the 2015-2016 academic year.

    • Prerequisites: ECSE 303 or ECSE 306 and ECSE 305 or permission of instructor

    • Restriction: Accessible only to Honours Electrical Engineering students and Graduate students in Engineering

  • ECSE 526 Artificial Intelligence (3 credits)

    Offered by: Electrical & Computer Engr (Faculty of Engineering)

    Overview

    Electrical Engineering : Design principles of autonomous agents, agent architectures, machine learning, neural networks, genetic algorithms, and multi-agent collaboration. The course includes a term project that consists of designing and implementing software agents that collaborate and compete in a simulated environment.

    Terms: Fall 2015

    Instructors: Cooperstock, Jeremy (Fall)

  • PHYS 413 Physical Basis of Physiology (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : Analytic and computer simulation techniques are used to examine the role of nonlinearities and time delays in determining the dynamic behaviour of physiological control systems and their relation to normal and pathophysiological states. Examples drawn from the control of respiration, cellular proliferation and differentiation, biochemical feedback networks, thermoregulatory mechanisms, and neural feedback.

    Terms: This course is not scheduled for the 2015-2016 academic year.

    Instructors: There are no professors associated with this course for the 2015-2016 academic year.

    • Fall

    • 3 hours lectures

    • Prerequisite: MATH 315, or MATH 325, and permission of the instructor

    • Intended for Major or Honours students in Physics, Physiology, Physiology and Physics, or Mathematics and others with permission

Complementary Courses

0-6 credits

Up to 6 credits in the B.Eng., B.S.E., or B.Sc.(Arch.) program can also be credited to the Minor, with the permission of the Departmental Adviser and approval of the Minor Adviser. In particular, courses at the 200 level or higher that are prerequisites for certain specialization courses would be eligible, with permission of the Minor Adviser. By careful selection of complementary courses, the Minor can be satisfied with 9 additional credits in the student's major program or a maximum of 12 credits of overlap with the major program.

Faculty of Engineering—2015-2016 (last updated Aug. 20, 2015) (disclaimer)
Back to top