Note: This is the 2014–2015 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Program Requirements
The Major program includes, in addition to some intensive studies in Physiology, a strong core content of related biomedical sciences. Admission to the Major program will be in U2, upon completion of the U1 required courses, and in consultation with the student's adviser.
If not previously taken, CHEM 212 "Introductory Organic Chemistry 1" must be completed in addition to the 64-65 program credits.
Students may complete this program with a minimum of 64 credits or a maximum of 65 credits depending on their choice of complementary courses.
U1 Required Courses (18 credits)
-
BIOL 200 Molecular Biology (3 credits)
Overview
Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.
Terms: Fall 2014
Instructors: Bureau, Thomas E; Roy, Richard D W; Fagotto, Francesco; Zetka, Monique (Fall)
-
BIOL 202 Basic Genetics (3 credits)
Overview
Biology (Sci) : Introduction to basic principles, and to modern advances, problems and applications in the genetics of higher and lower organisms with examples representative of the biological sciences.
Terms: Winter 2015, Summer 2015
Instructors: Schoen, Daniel J; Moon, Nam Sung; Hendricks, Shelton (Winter) Dankort, David; Hipfner, David (Summer)
-
CHEM 222 Introductory Organic Chemistry 2 (4 credits)
Overview
Chemistry : Modern spectroscopic techniques for structure determination. The chemistry of alcohols, ethers, carbonyl compounds, and amines, with special attention to mechanistic aspects. Special topics.
Terms: Fall 2014, Winter 2015, Summer 2015
Instructors: Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Perepichka, Dmytro; Harpp, David Noble (Fall) Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Auclair, Karine (Winter) Pavelka, Laura; Daoust, Michel (Summer)
-
PHGY 209 Mammalian Physiology 1 (3 credits)
Overview
Physiology : Physiology of body fluids, blood, body defense mechanisms, muscle, peripheral, central, and autonomic nervous systems.
Terms: Fall 2014
Instructors: Wechsler, Ann; Gold, Phil; Ragsdale, David S (Fall)
Fall
3 hours lectures weekly
Prerequisites: BIOL 112, CHEM 110, CHEM 120, PHYS 101 or PHYS 131, and PHYS 102 or PHYS 142. Pre-/co-requisites: BIOL 200, CHEM 212 or equivalent.
Restriction: Not open to students who have taken PHGY 211 or students who are taking and who have taken NSCI 200.
Restriction: For students in the Faculty of Science, and other students by permission of the instructor
-
PHGY 210 Mammalian Physiology 2 (3 credits)
Overview
Physiology : Physiology of cardiovascular, respiratory, digestive, endocrine and renal systems.
Terms: Winter 2015
Instructors: White, John H; Wechsler, Ann; Takano, Tomoko (Winter)
Winter
3 hours lectures weekly
Prerequisites: BIOL 112, CHEM 110, CHEM 120, PHYS 101 or PHYS 131, and PHYS 102 or PHYS 142. Pre-/co-requisite: BIOL 200, BIOL 201, BIOC 212, CHEM 212 or equivalent.
Restriction: For students in the Faculty of Science, and other students by permission of the instructor
Although PHGY 210 may be taken without the prior passing of PHGY 209, students should note that they may have some initial difficulties because of lack of familiarity with some basic concepts introduced in PHGY 209
-
PHGY 212 Introductory Physiology Laboratory 1 (1 credit)
Overview
Physiology : Exercises illustrating fundamental principles in physiology: Biological Signals Acquisitions, Blood, Immunology, Neurophysiology, Neuromuscular Physiology.
Terms: Fall 2014
Instructors: Martinez Trujillo, Julio; Glavinovic, Mladen I; Krnjevic, Kresimir (Fall)
(One 3-hour lab and one 1-hour lecture every second week.)
Corequisite: PHGY 209.
Restrictions: Required for Physiology students enrolled in PHGY 209. Open to BA &Sc. students and to others by permission of the instructor. Not open to students who have taken PHGY 212D1/D2.
Note: For students in a Physiology program, PHGY 212 should be taken concurrently with PHGY 209.
-
PHGY 213 Introductory Physiology Laboratory 2 (1 credit)
Overview
Physiology : Exercises illustrating fundamental principles in physiology: Central Nervous System, Cardiovascular, Respiration, Exercise Physiology, Molecular Endocrinology.
Terms: Winter 2015
Instructors: Guevara, Michael R; Mortola, Jacopo; Magder, Sheldon A; Watt, Douglas (Winter)
(One 3-hour lab and one 1-hour lecture every second week.)
Prerequisite: PHGY 212
Corequisite: PHGY 210.
Restrictions: Required for Physiology students enrolled in PHGY 210. Open to BA &Sc. students and to others by permission of the instructor. Not open to students who have taken PHGY 212D1/D2.
Note: For students in a Physiology program, PHGY 213 should be taken concurrently with PHGY 210.
U2 and U3 Required Courses (19 credits)
-
BIOC 311 Metabolic Biochemistry (3 credits)
Overview
Biochemistry : The generation of metabolic energy in higher organisms with an emphasis on its regulation at the molecular, cellular and organ level. Chemical concepts and mechanisms of enzymatic catalysis are also emphasized. Included: selected topics in carbohydrate, lipid and nitrogen metabolism; complex lipids and biological membranes; hormonal signal transduction.
Terms: Fall 2014
Instructors: St-Pierre, Julie; Schmeing, Thomas Martin; Tremblay, Michel (Fall)
-
BIOL 301 Cell and Molecular Laboratory (4 credits)
Overview
Biology (Sci) : An introduction to laboratory techniques with a focus on methods used to investigate fundamental questions in modern cell and molecular biology. Techniques including gene cloning, DNA and protein isolation and manipulation are covered, along with functional analysis of genes and proteins, basic bioinformatics, and computer-based experimental design and data analysis.
Terms: Fall 2014, Winter 2015
Instructors: Zheng, Huanquan; Harrison, Paul; Reyes Lamothe, Rodrigo (Fall) Zheng, Huanquan; Harrison, Paul; Reyes Lamothe, Rodrigo (Winter)
Fall or Winter
1 hour lecture and one 6-hour laboratory
Prerequisites: PHYS 102 or PHYS 142, BIOL 200, BIOL 201 or ANAT/BIOC 212, and BIOL 202. BIOL 206 recommended.
Restrictions: Not open to students who have taken or are taking BIOC 300. Requires departmental approval.
For approval email anne-marie.sdicu [at] mcgill.ca. Specify your ID number as well as the term and two lab day preferences.
-
PHGY 311 Channels, Synapses & Hormones (3 credits)
Overview
Physiology : In-depth presentation of experimental results and hypotheses on cellular communication in the nervous system and the endocrine system.
Terms: Fall 2014
Instructors: Cooper, Ellis; Sjostrom, Per Jesper; Sharif Naeini, Reza (Fall)
Fall
3 hours of lectures per week; 1-3 hours optional lab/demonstration/tutorial arranged for a maximum of 3 afternoons per term
Prerequisite: PHGY 209 or permission of the instructor.
-
PHGY 312 Respiratory, Renal, & Cardiovascular Physiology (3 credits)
Overview
Physiology : In-depth presentation of experimental results and hypotheses underlying our current understanding of topics in renal, respiratory and cardiovascular functions explored beyond the introductory level.
Terms: Winter 2015
Instructors: Hanrahan, John W; Mortola, Jacopo; Shrier, Alvin (Winter)
-
PHGY 313 Blood, Gastrointestinal, & Immune Systems Physiology (3 credits)
Overview
Physiology : In-depth presentation of experimental results and hypotheses underlying our current understanding of topics in immunology, blood and fluids, and gastrointestinal physiology.
Terms: Winter 2015
Instructors: Jones, Russell; Blank, Volker Manfred; Kokoeva, Maia (Winter)
-
PHGY 314 Integrative Neuroscience (3 credits)
Overview
Physiology : In depth presentation of experimental results and hypotheses underlying our current understanding of how single neurons and ensembles of neurons encode sensory information, generate movement, and control cognitive functions such as emotion, learning, and memory, during voluntary behaviours.
Terms: Fall 2014
Instructors: Cullen, Kathleen E; Sharif Naeini, Reza; Martinez Trujillo, Julio (Fall)
Fall
3 hours of lectures per week
Prerequisites: PHGY 209
Complementary Courses (28 credits)
12-13 credits selected as follows:
3 credits, one of:
-
BIOC 212 Molecular Mechanisms of Cell Function (3 credits)
Overview
Biochemistry : An introductory course describing the biochemistry and molecular biology of selected key functions of animal cells, including: gene expression; mitochondrial production of metabolic energy; cellular communication with the extra-cellular environment; and regulation of cell division.
Terms: Winter 2015
Instructors: Pause, Arnim; Bouchard, Maxime; Young, Jason (Winter)
-
BIOL 201 Cell Biology and Metabolism (3 credits)
Overview
Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.
Terms: Winter 2015
Instructors: Brouhard, Gary; Brown, Gregory G; Zetka, Monique (Winter)
3 credits, one of:
-
BIOL 309 Mathematical Models in Biology (3 credits)
Overview
Biology (Sci) : Application of finite difference and differential equations to problems in cell and developmental biology, ecology and physiology. Qualitative, quantitative and graphical techniques are used to analyze mathematical models and to compare theoretical predictions with experimental data.
Terms: Fall 2014
Instructors: Glass, Leon (Fall)
Fall
3 hours lecture
Prerequisite: one year of calculus. An additional course in calculus is recommended
-
BIOL 373 Biometry (3 credits)
Overview
Biology (Sci) : Elementary statistical methods in biology. Introduction to the analysis of biological data with emphasis on the assumptions behind statistical tests and models. Use of statistical techniques typically available on computer packages.
Terms: Fall 2014
Instructors: Leung, Brian (Fall)
Fall
2 hours lecture and 2 hours laboratory
Prerequisite: MATH 112 or equivalent
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
-
COMP 202 Foundations of Programming (3 credits)
Overview
Computer Science (Sci) : Introduction to programming in a modern high-level language, modular software design and debugging. Programming concepts are illustrated using a variety of application areas.
Terms: Fall 2014, Winter 2015, Summer 2015
Instructors: Lyman-Abramovitch, Melanie; Gamboa Higuera, Juan Camilo; Tremblay, Jonathan (Fall) Tremblay, Jonathan; Cheung, Jackie; Oakes, Bentley (Winter) Manjanna, Sandeep (Summer)
3 hours
Prerequisite: a CEGEP level mathematics course
Restrictions: COMP 202 and COMP 208 cannot both be taken for credit. COMP 202 is intended as a general introductory course, while COMP 208 is intended for students interested in scientific computation. COMP 202 cannot be taken for credit with or after COMP 250
-
COMP 250 Introduction to Computer Science (3 credits)
Overview
Computer Science (Sci) : An introduction to the design of computer algorithms, including basic data structures, analysis of algorithms, and establishing correctness of programs. Overview of topics in computer science.
Terms: Fall 2014, Winter 2015
Instructors: Blanchette, Mathieu; Waldispuhl, Jérôme; Hatami, Hamed (Fall) Robillard, Martin; Smaoui, Mohamed (Winter)
-
PSYC 305 Statistics for Experimental Design (3 credits)
Overview
Psychology : An introduction to the design and analysis of experiments, including analysis of variance, planned and post hoc tests and a comparison of anova to correlational analysis.
Terms: Fall 2014, Winter 2015, Summer 2015
Instructors: Amsel, Rhonda N (Fall) Yu, Hsiu-Ting (Winter) Amsel, Rhonda N (Summer)
Fall and Winter
Prerequisite: PSYC 204 or equivalent
This course is required of all students who propose to enter an Honours or Major program in Psychology
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
3 credits, one of:
-
BIOC 312 Biochemistry of Macromolecules (3 credits)
Overview
Biochemistry : Gene expression from the start of transcription to the synthesis of proteins, their modifications and degradation. Topics covered: purine and pyrimidine metabolism; transcription and its regulation; mRNA processing; translation; targeting of proteins to specific cellular sites; protein glycosylation; protein phosphorylation; protein turn-over; programmed cell death (apoptosis).
Terms: Winter 2015
Instructors: Nepveu, Alain; Pelletier, Gerard; Turcotte, Bernard (Winter)
-
CHEM 203 Survey of Physical Chemistry (3 credits)
Overview
Chemistry : The fundamentals of thermodynamics and chemical kinetics with applications to biomolecular systems. Thermodynamic and kinetic control of biological processes.
Terms: Fall 2014
Instructors: Sanctuary, Bryan Clifford (Fall)
-
CHEM 204 Physical Chemistry/Biological Sciences 1 (3 credits)
Overview
Chemistry : Similar to CHEM 223/CHEM 243. Emphasis on the use of biological examples to illustrate the principles of physical chemistry. The relevance of physical chemistry to biology is stressed.
Terms: Fall 2014, Winter 2015
Instructors: Barrett, Christopher (Fall) Blum, Amy (Winter)
3-4 credits, one of:
-
ANAT 214 Systemic Human Anatomy (3 credits)
Overview
Anatomy & Cell Biology : Introduction to the gross anatomy of the various organ systems of head, neck and trunk regions of the human body. Practical tutorials include studies of prepared specimens, use of the anatomical museum and audio-visual materials. This course is limited in size. Selection of students (other than those requiring the course as part of their program) will be made after the first lecture. (Admission is guaranteed for all students enrolled in programs in the Department of Anatomy and Cell Biology for which ANAT 214 is a required course.)
Terms: Fall 2014
Instructors: Hermo, Louis (Fall)
-
ANAT 261 Introduction to Dynamic Histology (4 credits)
Overview
Anatomy & Cell Biology : An introduction to light and electron microscopic anatomy in which cell and tissue dynamics will be explored in the principal tissues and organs of the body.
Terms: Fall 2014
Instructors: Mandato, Craig A.; Morales, Carlos R (Fall)
Fall
3 hours lectures, 2 hours laboratory
Must be taken in U1 by students in Anatomy and Cell Biology programs
Prerequisite: BIOL 112 or CEGEP equivalent
Restriction: Open to students in biological sciences and others by special permission
-
ANAT 316 Human Visceral Anatomy (3 credits)
Overview
Anatomy & Cell Biology : The gross anatomy of the various organ systems of the human body, with emphasis on those aspects of greatest relevance to physical and occupational therapists. Laboratories include studies of prepared specimens, use of the anatomical museum and audiovisual materials.
Terms: Winter 2015
Instructors: Hermo, Louis (Winter)
9 credits selected from the Upper-Level Physiology (ULP) course list as follows:
-
BIOL 532 Developmental Neurobiology Seminar (3 credits)
Overview
Biology (Sci) : Discussions of all aspects of nervous system development including pattern formation, cell lineage, pathfinding and targeting by growing axons, and neural regeneration. The basis for these discussions will be recent research papers and other assigned readings.
Terms: Winter 2015
Instructors: Van Meyel, Donald; Kania, Artur; Fournier, Alyson Elise (Winter)
-
BMDE 505 Cell and Tissue Engineering (3 credits)
Overview
Biomedical Engineering : Application of the principles of engineering, physical, and biological sciences to modify and create cells and tissues for therapeutic applications will be discussed, as well as the industrial perspective and related ethical issues.
Terms: Winter 2015
Instructors: Prakash, Satya (Winter)
(3-0-6)
1.5 hours lecture/1.5 hours seminar per week
Restriction: graduate and final year undergraduate students from physical, biological, and medical science, and engineering.
-
BMDE 519 Biomedical Signals and Systems (3 credits)
Overview
Biomedical Engineering : An introduction to the theoretical framework, experimental techniques and analysis procedures available for the quantitative analysis of physiological systems and signals. Lectures plus laboratory work using the Biomedical Engineering computer system. Topics include: amplitude and frequency structure of signals, filtering, sampling, correlation functions, time and frequency-domain descriptions of systems.
Terms: Fall 2014
Instructors: Kearney, Robert E (Fall)
(3-0-6)
Prerequisites: Satisfactory standing in U3 Honours Physiology; or U3 Major in Physics-Physiology; or U3 Major Physiology-Mathematics; or permission of instructor
-
EXMD 502 Advanced Endocrinology 01 (3 credits)
Overview
Experimental Medicine : This course is designed for U3 students who are in a major or honours program in anatomy, biology, biochemistry or physiology and for graduate students. A multidisciplinary approach will be used to teach biosynthesis and processing of hormones, their regulation, function and mechanism of action. The material will cover hypothalamic, pituitary, thyroid, atrial and adrenal hormones as well as prostaglandins and related substances.
Terms: Fall 2014
Instructors: Bateman, Andrew; Kokoeva, Maia (Fall)
Fall
-
EXMD 503 Advanced Endocrinology 02 (3 credits)
Overview
Experimental Medicine : Study of the parathyroids, gut and pancreatic hormones and growth factors. In addition, the role of hormones and growth factors in reproduction and fetal maturation will be discussed.
Terms: Winter 2015
Instructors: Bateman, Andrew; Kokoeva, Maia (Winter)
Winter
-
EXMD 506 Advanced Applied Cardiovascular Physiology (3 credits)
Overview
Experimental Medicine : Offered in conjunction with the Department of Physiology. Current topics, methods and techniques for studying the cardiovascular system. Basic and applied cardiac electrophysiology, mechanisms of pacemaker activity, arrhythmias, the effects of drugs on cardiac functions, fetal circulation, coronary circulation, mechanics of blood flow, cardiovascular diseases, renal and neural control of the circulation, and cardiac assist devices.
Terms: Fall 2014
Instructors: Schwertani, Adel (Fall)
Fall
Prerequisite (Undergraduate): PHGY 313 or by permission of instructors
-
EXMD 507 Advanced Applied Respiratory Physiology (3 credits)
Overview
Experimental Medicine : Offered in conjunction with the Department of Physiology. In depth coverage of respiratory biology including: functional anatomy of the respiratory system, pulmonary statics and dynamics, chest wall and respiratory muscles, ventilation and perfusion, control of breathing, and defense mechanisms. This course is aimed at providing a solid grounding in pulmonary biology and its research applications.
Terms: Fall 2014
Instructors: Petrof, Basil (Fall)
Fall
Prerequisite: PHGY 313
-
EXMD 508 Advanced Topics in Respiration (3 credits)
Overview
Experimental Medicine : Offered in conjunction with the Department of Physiology. In depth coverage of developmental physiology, pulmonary vascular physiology, biology of airway smooth muscle, respiratory epithelium and molecular biology of respiratory muscles. Dyspnea, mechanical ventilation and respiratory failure will also be covered. This course emphasizes application of respiratory biology to basic and applied research and touches on pulmonary pathophysiology.
Terms: Winter 2015
Instructors: Fixman, Elizabeth Dee (Winter)
Winter
Prerequisite: EXMD 507
-
MIMM 414 Advanced Immunology (3 credits)
Overview
Microbiology and Immun (Sci) : An advanced course serving as a logical extension of MIMM 314. The course will integrate molecular, cellular and biochemical events involved in the ontogeny of the lymphoid system and its activation in the immune response. The course will provide the student with an up-to-date understanding of a rapidly moving field.
Terms: Fall 2014
Instructors: Fritz, Jörg; Lesage, Sylvie; Divangahi, Maziar (Fall)
Fall
3 hour lecture
Prerequisite: MIMM 314
-
MIMM 509 Inflammatory Processes (3 credits)
Overview
Microbiology and Immun (Sci) : This course concentrates on the non-specific aspects of the immune response, an area which is not adequately covered by the other immunology courses presented at the university. Interactions between guest researchers (from À¦°óSMÉçÇø and other universities) and students will be furthered.
Terms: Winter 2015
Instructors: Rauch, Joyce Ellen; Di Battista, Giovanni; Lesage, Sylvie (Winter)
-
PHGY 425 Analyzing Physiological Systems (3 credits)
Overview
Physiology : An introduction to quantitative analysis of physiological data, both to the mode of thinking and to a set of tools that allows accurate predictions of biological systems. Examples will range from oscillating genetic networks to understanding higher brain function. Modelling and data analysis through examples and exercises will be emphasized.
Terms: Fall 2014
Instructors: Cook, Erik; Glavinovic, Mladen I; Chacron, Maurice (Fall)
-
PHGY 451 Advanced Neurophysiology (3 credits)
Overview
Physiology : Topics of current interest in neurophysiology including the development of neurons and synapses, physiology of ionic channels, presynaptic and postsynaptic events in synaptic transmission and neuronal interactions in CNS function.
Terms: Fall 2014
Instructors: Cooper, Ellis; Cohen, Monroe W; Bourque, Charles W (Fall)
Fall
3 hours lecture
Prerequisite: PHGY 311 or equivalent
Restriction: Departmental approval required
-
PHGY 459D1 Physiology Seminar (3 credits) *
Overview
Physiology : Discussion of topics in mammalian, cellular and molecular physiology. Students will be required to write one essay and make at least one oral presentation per term. A final course essay is required.
Terms: Fall 2014
Instructors: Shrier, Alvin; Cohen, Monroe W; Hanrahan, John W (Fall)
Fall
2 hours seminar
Prerequisite: permission of instructors
Required course for U3 Honours students.
Students must register for both PHGY 459D1 and PHGY 459D2.
No credit will be given for this course unless both PHGY 459D1 and PHGY 459D2 are successfully completed in consecutive terms
-
PHGY 459D2 Physiology Seminar (3 credits) *
Overview
Physiology : See PHGY 459D1 for course description.
Terms: Winter 2015
Instructors: Hanrahan, John W; Philip, Anie; Shrier, Alvin (Winter)
Winter
Prerequisite: PHGY 459D1
No credit will be given for this course unless both PHGY 459D1 and PHGY 459D2 are successfully completed in consecutive terms
-
PHGY 461D1 Experimental Physiology (4.5 credits) **
Overview
Physiology : Individual project work under the supervision of Departmental Staff members.
Terms: Fall 2014
Instructors: Wechsler, Ann; Cooper, Linda H (Fall)
Fall
Restrictions: Departmental approval required. This course is a requirement for U3 students in the Honours Physiology program, the Major Program in Physiology and Mathematics, and the Major program in Physiology and Physics, and is open to a limited number of other U3 Physiology students.
Students must register for both PHGY 461D1 and PHGY 461D2.
No credit will be given for this course unless both PHGY 461D1 and PHGY 461D2 are successfully completed in consecutive terms
-
PHGY 461D2 Experimental Physiology (4.5 credits) **
Overview
Physiology : See PHGY 461D1 for course description.
Terms: Winter 2015
Instructors: Wechsler, Ann (Winter)
Winter
Prerequisite: PHGY 461D1
No credit will be given for this course unless both PHGY 461D1 and PHGY 461D2 are successfully completed in consecutive terms
-
PHGY 488 Stem Cell Biology (3 credits)
Overview
Physiology : The main concepts in stem cell biology: embryonic stem cells, induced pluripotent stem cells, cancer stem cells, stem cells populations of many adult tissues, applications of stem cell biology and ethical issues surrounding stem cell use in research and medicine. The major experimental methods and laboratory techniques in stem cell biology.
Terms: Fall 2014
Instructors: Nyzhnyk, Anastasiya; Stifani, Stefano; Yamanaka, Yojiro (Fall)
Prerequisite(s): PHGY 313 or by permission of instructor.
Restriction(s): Registration is on a first-come, first-served basis.
Restriction(s): Not open to students who are taking or have taken ANAT 416.
Critical reading of peer-reviewed journal papers, practice in oral presentations of scientific material and participation in group discussions.
-
PHGY 502 Exercise Physiology (3 credits)
Overview
Physiology : Behaviour of physiological processes in response to physical effort, in areas such as structural basis of muscle contraction, thermoregulation during exercise, mechanics and energetics of muscle contraction, fuel utilization, fatigue, physiological adjustments during exercise and influence of training.
Terms: Winter 2015
Instructors: Rousseau, Simon; Comtois, Alain Steve; Martin, James G (Winter)
-
PHGY 508 Advanced Renal Physiology (3 credits)
Overview
Physiology : Offered in conjunction with the Department of Medicine. Lectures and seminars will cover advanced concepts in selected areas of kidney physiology (glomerular and tubular function) as well as membrane and epithelial transport. Students will be expected to critically discuss selected experimental papers.
Terms: Fall 2014
Instructors: Cybulsky, Andrey V E; Alam, Ahsan; Torban, Elena (Fall)
Fall
Prerequisite (Undergraduate): PHGY 312 or the equivalent
Restriction: Open to advanced undergraduate and graduate students
-
PHGY 513 Cellular Immunology (3 credits)
Overview
Physiology : This course deals with cellular interactions, regulation and effector mechanisms of the normal immune response in relation to diseases and pathogenic processes. It is taught at an advanced level.
Terms: Winter 2015
Instructors: Jones, Russell; Saleh, Maya; Behr, Marcel A (Winter)
Winter
3 hours lectures plus term paper
Prerequisite: MIMM 314, or permission of the instructor
-
PHGY 515 Physiology of Blood 1 (3 credits)
Overview
Physiology : Study of the cell and molecular physiology of hemostasis and its pathophysiology (bleeding and thrombosis). Emphases on molecular mechanisms regulating clot formation, fibrinolysis, and cell adhesion/aggregation. Experimental approaches and specific clinical disorders will be analyzed. Weekly discussions, and a major term paper.
Terms: This course is not scheduled for the 2014-2015 academic year.
Instructors: There are no professors associated with this course for the 2014-2015 academic year.
-
PHGY 516 Physiology of Blood 2 (3 credits)
Overview
Physiology : Bone marrow hematopoiesis, with emphasis on regulation of stem cell proliferation and differentiation along hematopoietic pathways. Formation and differentiation of red and white blood cells and some of the diseases associated with hematopoiesis will be covered. Emphasis will be given to the molecular mechanisms involved in the normal and pathological conditions.
Terms: Winter 2015
Instructors: Blank, Volker Manfred; Pantopoulos, Konstantinos; Ponka, Premysl (Winter)
Winter
2 hours lecture plus 1 hour seminar weekly
-
PHGY 518 Artificial Cells (3 credits)
Overview
Physiology : Physiology, biotechnology, chemistry and biomedical application of artificial cells, blood substitutes, immobilized enzymes, microorganisms and cells, hemoperfusion, artificial kidneys, and drug delivery systems. PHGY 517 and PHGY 518 when taken together, will give a complete picture of this field. However, the student can select one of these.
Terms: Fall 2014
Instructors: Chang, Thomas Ming Swi; Barre, Paul E; Shum-Tim, Dominique (Fall)
Fall
Prerequisite (Undergraduate): permission of instructors.
-
PHGY 520 Ion Channels (3 credits)
Overview
Physiology : A discussion of the principal theories and interesting new developments in the study of ion channels. Based on a textbook, computer exercises and critical reading and presentation of research papers. Topics include: Properties of voltage-and ligand-gated channels, single channel analysis, structure and function of ion channels.
Terms: Fall 2014
Instructors: Sharif Naeini, Reza; Ragsdale, David S; Cooper, Ellis (Fall)
Winter
Offered in even numbered years
1 1/2 hour lecture, 1 1/2 hour seminar
Prerequisite: PHGY 311
Priority to Graduate and Honours students; others by permission of instructors.
-
PHGY 524 Chronobiology (3 credits)
Overview
Physiology : An introduction to the field of chronobiology. The aim is to provide basic instruction on different types of biological rhythms, with particular focus on circadian rhythms.
Terms: Fall 2014
Instructors: Cermakian, Nicolas; Bernard, Daniel; Storch, Kai-Florian (Fall)
-
PHGY 531 Topics in Applied Immunology (3 credits)
Overview
Physiology : Seminar format course in which experts in immunologic mechanisms of resistance against a variety of infectious diseases, including AIDS, malaria, and tuberculosis oversee student moderators in their presentation of recent scientific literature in the field.
Terms: Winter 2015
Instructors: Stevenson, Mary M; Nguyen, Dao; Ndao, Momar (Winter)
-
PHGY 550 Molecular Physiology of Bone (3 credits)
Overview
Physiology : Students will develop a working knowledge of cartilage and bone. Discussion topics will include: molecular and cellular environment of bone; heritable and acquired skeletal defects; research models used to study metabolic bone disease.
Terms: Fall 2014
Instructors: Murshed, Monzur; Rauch, Frank; Hendy, Geoffrey N; McKee, Marc D (Fall)
-
PHGY 552 Cellular and Molecular Physiology (3 credits)
Overview
Physiology : Discussions of recent significant advances in our understanding of the gene products involved in diverse cellular signalling pathways. Topics will include cell-surface hormone receptors, nuclear steroid hormone receptors, and ion channels and transporters. Students will present and critically evaluate experimental approaches, results and interpretations of selected research publications.
Terms: Winter 2015
Instructors: Orlowski, John; White, John H; Stochaj, Ursula (Winter)
Winter
1 hour lecture, 2 hours seminar weekly
Prerequisite: PHGY 311
Preference will be given to Physiology Honours and Graduate students
-
PHGY 556 Topics in Systems Neuroscience (3 credits)
Overview
Physiology : Topics of current interest in systems neurophysiology and behavioural neuroscience including: the neural representation of sensory information and motor behaviours, models of sensory motor integration, and the computational analysis of problems in motor control and perception. Students will be expected to present and critically discuss journal articles in class.
Terms: Winter 2015
Instructors: Cullen, Kathleen E; Guitton, Daniel E; Baker, Curtis L (Winter)
Winter
Restriction: Permission of the instructor required.
Restriction: Not open to students who have taken PHGY 456
-
PHGY 560 Light Microscopy-Life Science (3 credits)
Overview
Physiology : Introduction to optics, light microscopy imaging and data analysis for life scientists.
Terms: Winter 2015
Instructors: Brown, Claire; Stroh, Thomas; Ruthazer, Edward (Winter)
Winter
Prerequisites: BIOL 301 or permission of instructors.
-
PSYC 470 Memory and Brain (3 credits)
Overview
Psychology : Memory systems are studied with an emphasis on the neural computations that occur at various stages of the processing stream, focusing on the hippocampus, amygdala, basal ganglia, cerebellum and cortex. The data reviewed is obtained from human, non-human primates and rodents, with single unit recording, neuroimaging and brain damaged subjects.
Terms: Winter 2015
Instructors: Rajah, Maria (Winter)
-
PSYT 500 Advances: Neurobiology of Mental Disorders (3 credits)
Overview
Psychiatry : Current theories on the neurobiological basis of most well known mental disorders (e.g. schizophrenia, depression, anxiety, dementia). Methods and strategies in research on genetic, physiological and biochemical factors in mental illness will be discussed. Discussion will also focus on the rationale for present treatment approaches and on promising new approaches.
Terms: Winter 2015
Instructors: Srivastava, Lalit K; Chakravarty, Megha; Mechawar, Naguib (Winter)
Winter
3 hours
Prerequisite (Undergraduate): BIOC 212 and BIOC 311, or BIOC 312, or BIOL 200 and BIOL 201, or PHGY 311, or PSYC 308 and an upper-level biological science course with permission of the instructors, or equivalent. Basic knowledge of cellular and molecular biology is required.
Restriction: Open to U3 and graduate students only.
Restriction: Graduate Studies: strongly recommended for M.Sc. students in Psychiatry.
* the 6-credit course equals 3 credits of ULP and 6 credits of electives.
** the 9-credit course equals 3 credits of ULP and 6 credits of electives.
6 credits selected from the Upper-Level Science (ULS)
Note: For Chemistry, Neurology, and Neurosurgery: select from all courses 300 level and above and the ULS courses listed below.
For Biochemistry, Computer Science, Microbiology and Immunology, Mathematics, Physics, and Pathology: select from all courses 300 level and above.
For Anatomy, Biology, Experimental Medicine, Pharmacology, and Psychology: select from the ULS courses listed below:
-
ANAT 321 Circuitry of the Human Brain (3 credits)
Overview
Anatomy & Cell Biology : This course explores the functional organization of the human brain and spinal cord. The course focuses on how neuronal systems are designed to subserve specific motor, sensory, and cognitive operations.
Terms: Fall 2014
Instructors: Ragsdale, David S (Fall)
-
ANAT 322 Neuroendocrinology (3 credits)
Overview
Anatomy & Cell Biology : A lecture course describing brain-endocrine relationships. Emphasis on modern experimental evidence and conceptual developments within the field.
Terms: Winter 2015
Instructors: Walker, Claire; Stroh, Thomas; Boivin, Diane B (Winter)
Winter
3 hours lecture
Prerequisite: ANAT 261.
-
ANAT 365 Cellular Trafficking (3 credits)
Overview
Anatomy & Cell Biology : An intensive study of the processes of protein secretion and cell membrane biogenesis. Emphasis on morphological aspects of the above processes, and on the major techniques which have provided experimental evidence, namely, subcellular fractionation, cytochemistry and quantitative electron microscope radioautography.
Terms: Fall 2014
Instructors: McBride, Heidi; McPherson, Peter Scott; Kennedy, Timothy E (Fall)
-
ANAT 381 Basis of Embryology (3 credits)
Overview
Anatomy & Cell Biology : The basic processes of reproduction and embryonic development, such as molecular signaling; cell-cell interaction; differentiation; cell fate determination; genetic and epigenetic control of embryonic development.
Terms: Fall 2014
Instructors: Nagano, Makoto; Daniels, Eugene; Ao, Asangla (Fall)
-
ANAT 416 Development, Disease and Regeneration (3 credits)
Overview
Anatomy & Cell Biology : Importance of developmental biology for disease and regeneration. Topics: advanced developmental biology principles; molecular basis for stem cells and their potential applications; organogenesis and its applications to various diseases.
Terms: Winter 2015
Instructors: Daniels, Eugene; Kania, Artur; Charron, Frederic (Winter)
-
ANAT 458 Membranes and Cellular Signaling (3 credits) *
Overview
Anatomy & Cell Biology : An integrated treatment of the properties of biological membranes and of intracellular signaling, including the major role that membranes play in transducing and integrating cellular regulatory signals. Biological membrane organization and dynamics; membrane transport; membrane receptors and their associated effectors; mechanisms of regulation of cell growth, morphology, differentiation and death.
Terms: Winter 2015
Instructors: Silvius, John R; Autexier, Chantal; Lamarche, Nathalie (Winter)
-
ANAT 541 Cell and Molecular Biology of Aging (3 credits)
Overview
Anatomy & Cell Biology : Complex aging process, including theories and mechanisms of aging, animal model systems used to study aging, age-dependent diseases, for example, Alzheimer's, osteoporosis, and cancer, and age-related diseases, for example, Werner's syndrome and dyskeratosis congenita.
Terms: Winter 2015
Instructors: Lehoux, Stephanie; Autexier, Chantal; LeBlanc, Andrea (Winter)
-
ANAT 542 Transmission Electron Microscopy (3 credits)
Overview
Anatomy & Cell Biology : Comprehensive study of transmission electron microscopy (TEM). Theory, principles and practical applications of imaging, analysis and advanced sample preparation relevant to biological and non-biological materials.
Terms: Winter 2015
Instructors: Rouiller, Isabelle; Gauvin, Raynald; Siwick, Bradley (Winter)
Prerequisite(s): Permission of instructor
2 hours of lecture per week, 3 hours of laboratories per week with an optional 2 hours of tutorials per week. The maximum number of students is 20. For students in science, engineering and life sciences.
-
ANAT 565 Diseases-Membrane Trafficking (3 credits)
Overview
Anatomy & Cell Biology : This course will examine how research into diseases has played a key role in unraveling the intricate molecular mechanisms controlling membrane trafficking in mammalian cells. Membrane trafficking disorders fall into two groups those arising from a) membrane-associated or b) cytoskeletal defect. Topics include a) mechanisms of endosomal maturation, lysosomal storage disorders and rab protein-mediated vesicular trafficking and b) rho GTPase and cytoskeletal binding protein mediated trafficking associated with neurological diseases and cancer.
Terms: Winter 2015
Instructors: Presley, John; McBride, Heidi; Lefrancois, Stephane (Winter)
Prerequisite: ANAT 365
-
BIOC 458 Membranes and Cellular Signaling (3 credits) *
Overview
Biochemistry : An integrated treatment of the properties of biological membranes and of intracellular signaling, including the major role that membranes play in transducing and integrating cellular regulatory signals. Biological membrane organization and dynamics: membrane transport; membrane receptors and their associated effectors; mechanisms of regulation of cell growth, morphology, differentiation and death.
Terms: Winter 2015
Instructors: Silvius, John R; Autexier, Chantal; Lamarche, Nathalie (Winter)
-
BIOL 300 Molecular Biology of the Gene (3 credits)
Overview
Biology (Sci) : A survey of current knowledge and approaches in the area of regulation of gene expression, post-transcriptional control of gene expression, and signal transduction.
Terms: Fall 2014
Instructors: Schöck, Frieder; Moon, Nam Sung (Fall)
-
BIOL 303 Developmental Biology (3 credits)
Overview
Biology (Sci) : A consideration of the fundamental processes and principles operating during embryogenesis. Experimental analyses at the molecular, cellular, and organismal levels will be presented and discussed to provide an overall appreciation of developmental phenomena.
Terms: Winter 2015
Instructors: Kaitna, Susanne; Rao, Yong; Dufort, Daniel (Winter)
-
BIOL 309 Mathematical Models in Biology (3 credits)
Overview
Biology (Sci) : Application of finite difference and differential equations to problems in cell and developmental biology, ecology and physiology. Qualitative, quantitative and graphical techniques are used to analyze mathematical models and to compare theoretical predictions with experimental data.
Terms: Fall 2014
Instructors: Glass, Leon (Fall)
Fall
3 hours lecture
Prerequisite: one year of calculus. An additional course in calculus is recommended
-
BIOL 313 Eukaryotic Cell Biology (3 credits)
Overview
Biology (Sci) : Cell biology of eukaryotes focusing on the assembly and function of cellular structures, the regulation of transcription; the dynamics of the cytoskeleton and its motors; mechanics of cell division; cell cycle and checkpoints; nuclear dynamics; chromosome structure and behaviour and experimental techniques.
Terms: Winter 2015
Instructors: Zetka, Monique; Fagotto, Francesco; Kaitna, Susanne (Winter)
-
BIOL 314 Molecular Biology of Oncogenes (3 credits)
Overview
Biology (Sci) : The genes that cause cancer are altered versions of genes present in normal cells. The origins of these oncogenes, their genetic structure, regulation, and the biochemical properties of the oncogene-encoded proteins will be analyzed in an attempt to understand the origins of human and animal cancers.
Terms: Fall 2014
Instructors: Majewska, Loydie; Tonin, Patricia N; Ursini-Siegel, Giuseppina (Fall)
-
BIOL 324 Ecological Genetics (3 credits)
Overview
Biology (Sci) : This course presents evolutionary genetics within an ecological context. The course covers theoretical topics together with relevant data from natural populations of plants and animals.
Terms: This course is not scheduled for the 2014-2015 academic year.
Instructors: There are no professors associated with this course for the 2014-2015 academic year.
Fall
2 hours lecture, 1 hour seminar
Prerequisite: BIOL 202
-
BIOL 370 Human Genetics Applied (3 credits)
Overview
Biology (Sci) : A contemporary view of genetic research as applied to human health and well-being.
Terms: Fall 2014
Instructors: Palmour, Roberta M; Pastinen, Tomi Markku; Mitchell, John James (Fall)
-
BIOL 373 Biometry (3 credits)
Overview
Biology (Sci) : Elementary statistical methods in biology. Introduction to the analysis of biological data with emphasis on the assumptions behind statistical tests and models. Use of statistical techniques typically available on computer packages.
Terms: Fall 2014
Instructors: Leung, Brian (Fall)
Fall
2 hours lecture and 2 hours laboratory
Prerequisite: MATH 112 or equivalent
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
-
BIOL 389 Laboratory in Neurobiology (3 credits)
Overview
Biology (Sci) : Methods of neurobiological research, including extracellular and intracellular recordings, electrical stimulation, and the study of neuro-behavioural problems.
Terms: Winter 2015
Instructors: Dent, Joseph Alan; Krahe, Rudiger; Watt, Alanna (Winter)
-
BIOL 416 Genetics of Mammalian Development (3 credits)
Overview
Biology (Sci) : This course aims to examine problems, theories, and experimental evidence on several concepts of mammalian developmental processes at molecular to organogenesis levels. Most topics are in the mouse model system, where various techniques for genetic manipulation are available.
Terms: Winter 2015
Instructors: Dufort, Daniel; Gupta, Indra; Taketo-Hosotani, Teruko (Winter)
-
BIOL 468 Independent Research Project 3 (6 credits)
Overview
Biology (Sci) : Independent research project.
Terms: Fall 2014, Winter 2015, Summer 2015
Instructors: There are no professors associated with this course for the 2014-2015 academic year.
Fall, Winter or Summer
Prerequisite: BIOL 206 or BIOL 301 or other suitable laboratory course
Restriction: Open only to Biology students. Not open to students who have taken BIOL 471 or BIOL 471D1/D2.
Projects must be arranged individually with a staff member of the Biology Department and a form from Nancy Nelson, Room W3/25, Stewart Building, must be completed prior to registration.
-
BIOL 518 Advanced Topics in Cell Biology (3 credits)
Overview
Biology (Sci) : Concepts and mechanisms in advanced cell biology, based on genetic, cell biological, biophysical, and computational studies. Emphasis is placed on processes that are evolutionarily conserved, with examples from model organisms and cell-free (in vitro) approaches.
Terms: Winter 2015
Instructors: Brouhard, Gary; Vogel, Jacalyn (Winter)
Winter
3 hours seminar
Prerequisite: BIOL 313 or permission
-
BIOL 520 Gene Activity in Development (3 credits)
Overview
Biology (Sci) : An analysis of the role and regulation of gene expression in several models of eukaryotic development. The emphasis will be on critical evaluation of recent literature concerned with molecular or genetic approaches to the problems of cellular differentiation and determination. Recent research reports will be discussed in conferences and analyzed in written critiques.
Terms: Winter 2015
Instructors: Roy, Richard D W (Winter)
-
BIOL 524 Topics in Molecular Biology (3 credits)
Overview
Biology (Sci) : Molecular genetics and molecular, cellular and developmental biology, including signal transduction, cell differentiation and function, genetic diseases in eukaryotes.
Terms: Fall 2014
Instructors: Clarke, Hugh; Dankort, David (Fall)
-
BIOL 532 Developmental Neurobiology Seminar (3 credits)
Overview
Biology (Sci) : Discussions of all aspects of nervous system development including pattern formation, cell lineage, pathfinding and targeting by growing axons, and neural regeneration. The basis for these discussions will be recent research papers and other assigned readings.
Terms: Winter 2015
Instructors: Van Meyel, Donald; Kania, Artur; Fournier, Alyson Elise (Winter)
-
BIOL 544 Genetic Basis of Life Span (3 credits)
Overview
Biology (Sci) : The course will consider how gene action is determining the duration of life in various organisms focusing on the strengths and limitations of the genetic approach. The course will focus particularly on model organisms such as yeast, Caenorhabditis, Drosophila and mouse, as well as on the characterization of long-lived people.
Terms: This course is not scheduled for the 2014-2015 academic year.
Instructors: There are no professors associated with this course for the 2014-2015 academic year.
-
BIOL 546 Genetics of Model Systems (3 credits)
Overview
Biology (Sci) : Topics in the genetics and molecular genetics of unicellular, plant, invertebrate and vertebrate models systems.
Terms: Fall 2014
Instructors: Hekimi, Siegfried (Fall)
-
BIOL 551 Principles of Cellular Control (3 credits)
Overview
Biology (Sci) : Fundamental principles of cellular control, with cell cycle control as a major theme. Biological and physical concepts are brought to bear on control in healthy cells..
Terms: Winter 2015
Instructors: Vogel, Jacalyn; Francois, Paul (Winter)
- BIOL 575 Human Biochemical Genetics (3 credits)
-
BIOL 588 Advances in Molecular/Cellular Neurobiology (3 credits)
Overview
Biology (Sci) : Discussion of fundamental molecular mechanisms underlying the general features of cellular neurobiology. An advanced course based on lectures and on a critical review of primary research papers.
Terms: Fall 2014
Instructors: Hastings, Kenneth E M; Carbonetto, Salvatore T (Fall)
-
CHEM 214 Physical Chemistry/Biological Sciences 2 (3 credits)
Overview
Chemistry : Emphasis is placed on the use of biological examples to illustrate the principles of physical chemistry. The relevance of physical chemistry to biology is stressed.
Terms: Winter 2015
Instructors: Mittermaier, Anthony; Sewall, Samuel Lewis (Winter)
-
EPIB 501 Population Health and Epidemiology (3 credits)
Overview
Epidemiology & Biostatistics : This course presents concepts and methods of epidemiology at the introductory level. The use of epidemiologic methods for population and public health research and practice will be illustrated. A review of selected population health questions such as the HIV/AIDS epidemic, the cardiovascular disease epidemic, cigarette smoking, or screening for disease will be presented.
Terms: Winter 2015
Instructors: Boivin, Jean-Francois (Winter)
Restriction: Course not open to students enrolled in Epidemiology or Public Health programs.
-
EXMD 401 Physiology and Biochemistry Endocrine Systems (3 credits)
Overview
Experimental Medicine : Offered in conjunction with the Department of Physiology. The course provides a basic knowledge of endocrine systems encompassing biosynthesis, metabolism and physiological actions of hormones. Specific topics covered are hormones of the hypothalamus, pituitary, adrenals, thyroids, parathyroids, pancreas, gut and the gonads. The role of hormones and growth factors in pregnancy and fetal development are also discussed.
Terms: Winter 2015
Instructors: Liu, Jun-Li (Winter)
-
EXMD 502 Advanced Endocrinology 01 (3 credits)
Overview
Experimental Medicine : This course is designed for U3 students who are in a major or honours program in anatomy, biology, biochemistry or physiology and for graduate students. A multidisciplinary approach will be used to teach biosynthesis and processing of hormones, their regulation, function and mechanism of action. The material will cover hypothalamic, pituitary, thyroid, atrial and adrenal hormones as well as prostaglandins and related substances.
Terms: Fall 2014
Instructors: Bateman, Andrew; Kokoeva, Maia (Fall)
Fall
-
EXMD 503 Advanced Endocrinology 02 (3 credits)
Overview
Experimental Medicine : Study of the parathyroids, gut and pancreatic hormones and growth factors. In addition, the role of hormones and growth factors in reproduction and fetal maturation will be discussed.
Terms: Winter 2015
Instructors: Bateman, Andrew; Kokoeva, Maia (Winter)
Winter
-
EXMD 504 Biology of Cancer (3 credits)
Overview
Experimental Medicine : An introduction to the biology of malignancy. A multidisciplinary approach dealing with the etiology of cancer, the biological properties of malignant cells, the host response to tumour cell growth and the principles of cancer therapy.
Terms: Fall 2014
Instructors: Topisirovic, Ivan; Fabian, Marc (Fall)
Fall
Prerequisite (Undergraduate): A good knowledge of biology at the cellular and molecular level. Open to U3 and graduate students only
-
EXMD 506 Advanced Applied Cardiovascular Physiology (3 credits)
Overview
Experimental Medicine : Offered in conjunction with the Department of Physiology. Current topics, methods and techniques for studying the cardiovascular system. Basic and applied cardiac electrophysiology, mechanisms of pacemaker activity, arrhythmias, the effects of drugs on cardiac functions, fetal circulation, coronary circulation, mechanics of blood flow, cardiovascular diseases, renal and neural control of the circulation, and cardiac assist devices.
Terms: Fall 2014
Instructors: Schwertani, Adel (Fall)
Fall
Prerequisite (Undergraduate): PHGY 313 or by permission of instructors
-
EXMD 507 Advanced Applied Respiratory Physiology (3 credits)
Overview
Experimental Medicine : Offered in conjunction with the Department of Physiology. In depth coverage of respiratory biology including: functional anatomy of the respiratory system, pulmonary statics and dynamics, chest wall and respiratory muscles, ventilation and perfusion, control of breathing, and defense mechanisms. This course is aimed at providing a solid grounding in pulmonary biology and its research applications.
Terms: Fall 2014
Instructors: Petrof, Basil (Fall)
Fall
Prerequisite: PHGY 313
-
EXMD 508 Advanced Topics in Respiration (3 credits)
Overview
Experimental Medicine : Offered in conjunction with the Department of Physiology. In depth coverage of developmental physiology, pulmonary vascular physiology, biology of airway smooth muscle, respiratory epithelium and molecular biology of respiratory muscles. Dyspnea, mechanical ventilation and respiratory failure will also be covered. This course emphasizes application of respiratory biology to basic and applied research and touches on pulmonary pathophysiology.
Terms: Winter 2015
Instructors: Fixman, Elizabeth Dee (Winter)
Winter
Prerequisite: EXMD 507
-
EXMD 510 Bioanalytical Separation Methods (3 credits)
Overview
Experimental Medicine : The student will be taught the capabilities and limitations of modern separation methods (gas and high-performance liquid chromatography, capillary electrophoresis, hyphenated techniques). Application of these techniques to solve analytical problems relevant to biomedical research will be emphasized, with special attention being paid to the processing of biological samples.
Terms: Fall 2014
Instructors: Jean-Claude, Bertrand (Fall)
Fall
-
NEUR 310 Cellular Neurobiology (3 credits)
Overview
Neurology and Neurosurgery : A survey of the functional organization of nerve cells, signalling in the nervous system, and principles of neural development. Topics include cell polarity, neurotransmitters, neurotrophins, receptors and second messengers, cell lineage, guidance of axon outgrowth, and nerve regeneration. Emphasis will be placed on analysis of neurons at the molecular level.
Terms: Winter 2015
Instructors: Cloutier, Jean-Francois; Ragsdale, David S; Kennedy, Timothy E (Winter)
- PHAR 503 Drug Discovery and Development 1 (3 credits)
-
PHAR 504 Drug Discovery and Development 2 (3 credits)
Overview
Pharmacology and Therapeutics : Nobel Prize-winning discoveries as a basis for drug development.
Terms: Winter 2015
Instructors: Munter, Lisa; Maysinger, Dusica (Winter)
-
PHAR 562 General Pharmacology 1 (3 credits)
Overview
Pharmacology and Therapeutics : Topics in pharmacology with an emphasis on molecular aspects and the nervous system; topics include molecular mechanisms of drug-action, cellular targets and rationale for therapeutics.
Terms: Fall 2014
Instructors: Bowie, Derek; Clarke, Paul (Fall)
Fall
Prerequisite: PHAR 301.
Restriction: Open to U3 students in the minor, major or honours program in Pharmacology, or with permission of instructor.
-
PHAR 563 General Pharmacology 2 (3 credits)
Overview
Pharmacology and Therapeutics : Selected topics in pharmacology of the endocrine, metabolic, and cardiovascular systems. Additional topics include: pharmacogenetics/pharmacogenomics, chronopharmacology, molecular structure in pharmacology, epigenetic targets in cancer chemotherapy, and stem cell therapies.
Terms: Winter 2015
Instructors: Bernard, Daniel (Winter)
Winter
Prerequisite: PHAR 301.
Restriction: Open to U3 students in the minor, major or honours program in Pharmacology, or with permission of instructor.
-
PSYC 302 The Psychology of Pain (3 credits)
Overview
Psychology : An introduction to pain research and theory, with emphasis on the interactions of psychological, cultural and physiological factors in pain perception. The role of these factors in clinical pain and its management by pharmacological and non-pharmacological means will be discussed.
Terms: Fall 2014
Instructors: Mogil, Jeffrey (Fall)
-
PSYC 311 Human Cognition and the Brain (3 credits)
Overview
Psychology : The course is an introduction to the field studying how human cognitive processes, such as perception, attention, language, learning and memory, planning and organization, are related to brain processes. The material covered is primarily based on studies of the effects of different brain lesions on cognition and studies of brain activity in relation to cognitive processes with modern functional neuroimaging methods.
Terms: Fall 2014, Summer 2015
Instructors: Petrides, Michalakis (Fall) Petrides, Michalakis (Summer)
Fall
2 lectures; 1 conference
-
PSYC 317 Genes and Behaviour (3 credits)
Overview
Psychology : Focuses on current techniques employed to study which genes influence behaviour, and how they do so.
Terms: This course is not scheduled for the 2014-2015 academic year.
Instructors: There are no professors associated with this course for the 2014-2015 academic year.
-
PSYC 318 Behavioural Neuroscience 2 (3 credits)
Overview
Psychology : The physiological bases of motivational states, with respect to feeding, drinking, sexual behavior, drug use, and aggression. Physiological bases of learning and memory.
Terms: Winter 2015
Instructors: Britt, Jonathan (Winter)
- PSYC 342 Hormones and Behaviour (3 credits)
-
PSYC 410 Special Topics in Neuropsychology (3 credits)
Overview
Psychology : Developments in cognitive neuroscience and cognitive neuropsychiatry via readings from primary sources. Topics include the neural bases of memory, emotion, social cognition and neuropsychiatric diseases. Integrating knowledge from studies in clinical populations and functional neuroimaging studies.
Terms: Fall 2014
Instructors: Lepage, Martin; Bernard-Brodeur, Mathieu; Harvey, Philippe (Fall)
-
PSYC 427 Sensorimotor Behaviour (3 credits)
Overview
Psychology : A systematic examination of the sensorimotor system, drawing on models and data from both behavioural and physiological studies. Topics include: cortical motor areas, cerebellum, basal ganglia, spinal mechanisms, motor unit properties and force production, prioception, muscle properties.
Terms: This course is not scheduled for the 2014-2015 academic year.
Instructors: There are no professors associated with this course for the 2014-2015 academic year.
Winter
2 lectures
Prerequisite: PSYC 308 or permission of instructor
-
PSYC 470 Memory and Brain (3 credits)
Overview
Psychology : Memory systems are studied with an emphasis on the neural computations that occur at various stages of the processing stream, focusing on the hippocampus, amygdala, basal ganglia, cerebellum and cortex. The data reviewed is obtained from human, non-human primates and rodents, with single unit recording, neuroimaging and brain damaged subjects.
Terms: Winter 2015
Instructors: Rajah, Maria (Winter)
-
PSYC 522 Neurochemistry and Behaviour (3 credits)
Overview
Psychology : Anatomical, biochemical and physiological aspects of neurotransmitter systems in the brain, current theories of the function of these systems in normal and abnormal behaviour, and the actions of psychotropic drugs.
Terms: Winter 2015
Instructors: Pompeiano, Maria (Winter)
-
PSYC 526 Advances in Visual Perception (3 credits)
Overview
Psychology : We examine in detail the structure of the visual system, and its function as reflected in the perceptual abilities and behaviour of the organism. Parallels are also drawn with other sensory systems to demonstrate general principles of sensory coding.
Terms: Winter 2015
Instructors: Kingdom, Frederick A A; Mullen, Kathleen T (Winter)
Winter
2 lectures
-
PSYT 500 Advances: Neurobiology of Mental Disorders (3 credits)
Overview
Psychiatry : Current theories on the neurobiological basis of most well known mental disorders (e.g. schizophrenia, depression, anxiety, dementia). Methods and strategies in research on genetic, physiological and biochemical factors in mental illness will be discussed. Discussion will also focus on the rationale for present treatment approaches and on promising new approaches.
Terms: Winter 2015
Instructors: Srivastava, Lalit K; Chakravarty, Megha; Mechawar, Naguib (Winter)
Winter
3 hours
Prerequisite (Undergraduate): BIOC 212 and BIOC 311, or BIOC 312, or BIOL 200 and BIOL 201, or PHGY 311, or PSYC 308 and an upper-level biological science course with permission of the instructors, or equivalent. Basic knowledge of cellular and molecular biology is required.
Restriction: Open to U3 and graduate students only.
Restriction: Graduate Studies: strongly recommended for M.Sc. students in Psychiatry.
* Students may take ANAT 458 or BIOC 458 but not both.
Note: Students may opt to replace 3 credits of the 6 credits of Upper Level Science with 3 credits selected from the following list:
-
COMP 364 Computer Tools for Life Sciences (3 credits)
Overview
Computer Science (Sci) : Concepts and tools for programmatic storage, retrieval, searching, numerical analysis, and visualization of large biological data sets.
Terms: Winter 2015
Instructors: Hallett, Michael Trevor (Winter)
-
PHIL 341 Philosophy of Science 1 (3 credits)
Overview
Philosophy : A discussion of philosophical problems as they arise in the context of scientific practice and enquiry. Such issues as the philosophical presuppositions of the physical and social sciences, the nature of scientific method and its epistemological implications will be addressed.
Terms: Winter 2015
Instructors: Laywine, Alison (Winter)
-
PHIL 343 Biomedical Ethics (3 credits)
Overview
Philosophy : An investigation of ethical issues as they arise in the practice of medicine (informed consent, e.g.) or in the application of medical technology (in vitro fertilization, euthanasia, e.g.)
Terms: Fall 2014
Instructors: Hirose, Iwao (Fall)
-
REDM 410 Writing Research Articles (3 credits)
Overview
Redpath Museum : Students will learn about the scientific article, publishing in the sciences, and the benefits of writing for a wide audience. This course focuses on how to structure the Abstract, as well as the Introduction and Discussion section of the full manuscript, and on editing techniques.
Terms: This course is not scheduled for the 2014-2015 academic year.
Instructors: There are no professors associated with this course for the 2014-2015 academic year.
Prerequisite: 24 credits of 200/300-level Science courses.
Restriction: This is an advanced course and permission of the instructor is required. To obtain permission, students should email the instructor, linda.cooper [at] mcgill.ca. Not open to students who are taking or have taken REDM 399.