捆绑SM社区

News

Ice sheets on the move: how north and south poles connect

Changes in the Antarctic ice sheet were driven by the melting ice sheets in the Northern Hemisphere
Published: 25 November 2020

Over the past 40,000 years, ice sheets thousands of kilometres apart have influenced one another through sea level changes, according to research published today in . New modelling of ice sheet changes during the most recent glacial cycle by a 捆绑SM社区-led team offers a clearer idea of the mechanisms that drive change than had previously existed and explains newly available geological records. The study demonstrates, for the first time, that during this period, changes in the Antarctic ice sheet were driven by the melting ice sheets in the Northern Hemisphere.

As the climate cooled, during the last Ice Age, water became locked up in land ice in the Northern Hemisphere leading to dropping sea levels in Antarctica and consequent growth of the ice sheet. As the climate warmed, on the other hand, as it did through the period of deglaciation, the retreating ice in the Northern Hemisphere led to rising water levels around Antarctica, which in turn drove a retreat of the Antarctic ice sheet.

鈥淚ce sheets can influence each other over great distances due to the water that flows between them,鈥 explains senior author Natalya Gomez, from 捆绑SM社区鈥檚 Department of Earth and Planetary Sciences. 鈥淚t鈥檚 as though they were talking to one another through sea level changes.鈥

Finding answers in ocean sediment and records of past shorelines

鈥淧olar ice sheets are not just large, static mounds of ice. They evolve on various different time scales and are in constant flux, with the ice growing and retreating depending on the climate and the surrounding water levels,鈥 explains Gomez. 鈥淭hey gain ice as snow piles up on top of them, then spread outwards under their own weight, and stream out into the surrounding ocean where their edges break off into icebergs.鈥

In order to investigate the mechanisms involved in driving changes in the Antarctic ice sheet over geologic time scales, the study draws on numerical modeling and a wide range of geological records, from cores of sediment from the ocean bottom near Antarctica to records of land exposure and past shorelines.

With this information, the researchers were able, for the first time, to simulate, simultaneously, changes in both sea levels and ice dynamics in both hemispheres over the past 40,000 years. This time frame provides the basis for a broad understanding of how climate factors affect ice sheets, since it covers the period leading up to the peak of last Ice Age, between 26,000-20,000 years ago up to the present.

Water and ice sheets on the move

The records suggest that the ice loss from the Antarctic ice sheet over this period was significant, with intermittent periods of accelerated retreat. The researchers found that the only mechanism that could explain this response were the sea level changes in Antarctica caused by changes to the ice sheets in the Northern Hemisphere.

鈥淲e found a very variable signal of ice-mass loss over the last 20,000 years, left behind by icebergs breaking off Antarctica and melting down in the surrounding oceans,鈥 says Michael Weber, from the Department of Geochemistry and Petrology at the University of Bonn. 鈥淭his evidence could hardly be reconciled with existing models until we accounted for how the ice sheets in both hemispheres interact with one another across the globe.鈥

鈥淭he scale and complexity of ice sheets and the oceans, and the secrets of the Earth鈥檚 past climate that are locked up in the geological record are fascinating and inspiring,鈥 concludes Gomez. 鈥淥ur results highlight how interconnected the Earth system is, with changes in one part of the planet driving changes in another. In the modern era, we haven鈥檛 seen the kind of large ice sheet retreat that we might see in our future warming world. Looking to records and models of changes in Earth鈥檚 history can inform us about this.鈥


#########

To read 鈥淎ntarctic ice dynamics amplified by Northern Hemisphere sea level forcing鈥 by N. Gomez et al in Nature:
DOI: 10.1038/s41586-020-2916-2

The research was funded by the Natural Sciences and Engineering Research Council (NSERC), the Canada Research Chair鈥檚 program, the Canadian Foundation for Innovation, the Deutsche Forschungsgemeinschaft and by NASA.


About 捆绑SM社区

Founded in Montreal, Quebec, in 1821, 捆绑SM社区 is Canada鈥檚 top ranked medical doctoral university. 捆绑SM社区 is consistently ranked as one of the top universities, both nationally and internationally. It is a world-renowned institution of higher learning with research activities spanning two campuses, 11 faculties, 13 professional schools, 300 programs of study and over 40,000 students, including more than 10,200 graduate students. 捆绑SM社区 attracts students from over 150 countries around the world, its 12,800 international students making up 31% of the student body. Over half of 捆绑SM社区 students claim a first language other than English, including approximately 19% of our students who say French is their mother tongue.

Back to top